Neuronal and Perceptual Differences in the Temporal Processing of Darks and Lights

نویسندگان

  • Stanley Jose Komban
  • Jens Kremkow
  • Jianzhong Jin
  • Yushi Wang
  • Reza Lashgari
  • Xiaobing Li
  • Qasim Zaidi
  • Jose-Manuel Alonso
چکیده

Visual information is mediated by two major thalamic pathways that signal light decrements (OFF) and increments (ON) in visual scenes, the OFF pathway being faster than the ON. Here, we demonstrate that this OFF temporal advantage is transferred to visual cortex and has a correlate in human perception. OFF-dominated cortical neurons in cats responded ∼3 ms faster to visual stimuli than ON-dominated cortical neurons, and dark-mediated suppression in ON-dominated neurons peaked ∼14 ms faster than light-mediated suppression in OFF-dominated neurons. Consistent with the neuronal differences, human observers were 6-14 ms faster at detecting darks than lights and better at discriminating dark than light flickers. Neuronal and perceptual differences both vanished if backgrounds were biased toward darks. Our results suggest that the cortical OFF pathway is faster than the ON pathway at increasing and suppressing visual responses, and these differences have parallels in the human visual perception of lights and darks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuronal nonlinearity explains greater visual spatial resolution for darks than lights.

Astronomers and physicists noticed centuries ago that visual spatial resolution is higher for dark than light stimuli, but the neuronal mechanisms for this perceptual asymmetry remain unknown. Here we demonstrate that the asymmetry is caused by a neuronal nonlinearity in the early visual pathway. We show that neurons driven by darks (OFF neurons) increase their responses roughly linearly with l...

متن کامل

Temporal Asymmetry in Dark-Bright Processing Initiates Propagating Activity across Primary Visual Cortex.

UNLABELLED Differences between visual pathways representing darks and lights have been shown to affect spatial resolution and detection timing. Both psychophysical and physiological studies suggest an underlying retinal origin with amplification in primary visual cortex (V1). Here we show that temporal asymmetries in the processing of darks and lights create motion in terms of propagating activ...

متن کامل

Effect of Age and Glaucoma on the Detection of Darks and Lights.

PURPOSE We have shown previously that normal observers detect dark targets faster and more accurately than light targets, when presented in noisy backgrounds. We investigated how these differences in detection time and accuracy are affected by age and ganglion cell pathology associated with glaucoma. METHODS We asked 21 glaucoma patients, 21 age-similar controls, and 5 young control observers...

متن کامل

Neuronal mechanisms underlying differences in spatial resolution between darks and lights in human vision

Artists and astronomers noticed centuries ago that humans perceive dark features in an image differently from light ones; however, the neuronal mechanisms underlying these dark/light asymmetries remained unknown. Based on computational modeling of neuronal responses, we have previously proposed that such perceptual dark/light asymmetries originate from a luminance/response saturation within the...

متن کامل

Darks are processed faster than lights.

Recent physiological studies claim that dark stimuli have access to greater neuronal resources than light stimuli in early visual pathway. We used two sets of novel stimuli to examine the functional consequences of this dark dominance in human observers. We show that increment and decrement thresholds are equal when controlled for adaptation and eye movements. However, measurements for salience...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2014